1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
//! sec
//! ===
//!
//! The `sec` crate prevent secrets from accidentally leaking through `Debug`
//! or `Display` implementations. It does so by wrapping any kind of
//! confidential information in a zero-overhead type:
//!
//! ```rust
//! use sec::Secret;
//!
//! #[derive(Debug)]
//! struct User {
//! id: usize,
//! username: String,
//! session_token: Secret<String>,
//! }
//!
//! let alice = User{
//! id: 1,
//! username: "alice".to_owned(),
//! session_token: Secret::new("no one should see this".to_owned()),
//! };
//!
//! println!("Now talking to: {:?}", alice);
//! ```
//!
//! This will yield the following output:
//!
//! ```raw
//! Now talking to: User{ id = 1, username: String("alice"), session_token: "..." }
//! ```
//!
//! This functionality is very useful when dealing with data that should always
//! be prevented from accidentally leaking through panics, log files.
//!
//! The contained data can be accessed by any of the `reveal` methods:
//!
//! ```rust
//! # use sec::Secret;
//! #
//! # #[derive(Debug)]
//! # struct User {
//! # id: usize,
//! # username: String,
//! # session_token: Secret<String>,
//! # }
//! #
//! # let alice = User{
//! # id: 1,
//! # username: "alice".to_owned(),
//! # session_token: Secret::new("no one should see this".to_owned()),
//! # };
//! #
//! println!("Don't tell anyone, but Alice's token is: {}",
//! alice.session_token.reveal());
//! ```
//!
//! Only methods that contain `reveal` in their name actually allow accessing
//! the secret value.
//!
//!
//! ## Serde support (`deserialize`/`serialize` features)
//!
//! If the `deserialize` feature is enabled, any `Secret<T>` will automatically
//! implement `Deserialize` from [Serde](https://crates.io/crates/serde):
//!
//! ```ignore
//! #[derive(Deserialize)]
//! struct AuthRequest{
//! username: String,
//! password: Secret<String>,
//! }
//! ```
//!
//! `AuthRequest` will be deserialized as if `password` was a regular `String`,
//! the result will be stored as a `Secret<String>`. Additionally, if any
//! deserialization errors occur, the resulting serde error will be replaced
//! to avoid leaking the unparsed value.
//!
//! Serialization can be enabled through the `serialize` feature.
//!
//! **IMPORTANT**: Serializing data to a readable format is still a way to leak
//! secrets. Only enable this feature if you need it.
//!
//!
//! ## Diesel support (`diesel_sql` feature)
//!
//! Limited support for inserting and loading `Secret<T>` values through
//! [Diesel](https://crates.io/crates/diesel) can be enabled by the `diesel_sql`
//! feature.
//!
//! **IMPORTANT**: The database may log and echo back (on error) any query that
//! fails, takes to long or is otherwise deemed interesting. Using `Secret`
//! values in expressions should be avoided.
//!
//!
//! ## `no_std` support
//!
//! By disabling the default features, `no_std` is supported. It can be
//! re-enabled through the `std` feature.
//!
//!
//! ## Additional traits
//!
//! The traits `PartialEq`, `Eq` and `Hash` are implemented for `Secret`, by
//! simply passing through the operation to the underlying type. These traits
//! should be safe in a way that they will not accidentally leak the enclosed
//! secret.
//!
//! Additional, by enabling the `ord` feature, the `PartialOrd` and `Ord`
//! traits will be implemented. Since ordering could potentially leak
//! information when a collection order by a Secret is printed in-order, these
//! are opt-in by default.
//!
//!
//! ## Security
//!
//! While `sec` usually does a good job from preventing accidentally leaks
//! through logging mistakes, it currently does not protect the actual memory
//! (while not impossible, this requires a lot of extra effort due to heap
//! allocations). The data protected by sec is usually sent across the network
//! and passed around among different applications (e.g. a token authorizing a
//! client) or could reasonably be used as a key for a HashMap.
//!
//! To prevent copies inside an application, data is usually allocated on the
//! heap only and scrubbed afer deallocation. `sec` makes a trade-off in favor
//! of performance and generality here by not supporting this pattern. It is
//! not written to protect your GPG private key from core dumps, but rather
//! login tokens from accidental disclosure.
//!
//! If protecting cryptographic secrets in-memory from stackdumps and similar
//! is a concern, have a look at the [secrets]
//! (https://crates.io/crates/secrets), [secstr]
//! (https://crates.io/crates/secstr) or similar crates.
#![no_std]
#[cfg(feature = "diesel_sql")]
extern crate diesel;
#[macro_use]
#[cfg(feature = "std")]
extern crate std;
#[cfg(any(feature = "serialize", feature = "deserialize"))]
extern crate serde;
#[cfg(test)]
mod tests;
use core::fmt;
use core::hash::{Hash, Hasher};
#[cfg(feature = "ord")]
use core::cmp::Ordering;
#[cfg(feature = "diesel_sql")]
use std::io::Write;
#[cfg(feature = "std")]
use std::string::String;
#[cfg(feature = "serialize")]
use serde::Serializer;
#[cfg(feature = "deserialize")]
use serde::Deserializer;
/// Wraps a type `T`, preventing it from being accidentally revealed.
pub struct Secret<T>(T);
#[cfg(feature = "std")]
impl Secret<String> {
/// Returns a `str` reference, wrapped in a secret
#[inline]
pub fn as_str(&self) -> Secret<&str> {
Secret(self.0.as_str())
}
/// Return and **reveal** a `str` reference.
#[inline]
pub fn reveal_str(&self) -> &str {
self.0.as_str()
}
}
impl<T> Secret<T> {
/// Creates a new secret
#[inline]
pub fn new(val: T) -> Secret<T> {
Secret(val)
}
/// Create a secret immutable reference
#[inline]
pub fn as_ref(&self) -> Secret<&T> {
Secret(&self.0)
}
/// Create a secret mutable reference
#[inline]
pub fn as_mut(&mut self) -> Secret<&mut T> {
Secret(&mut self.0)
}
/// **Reveal** the held value by returning a reference
#[inline]
pub fn reveal(&self) -> &T {
&self.0
}
/// **Reveal** the held value by unwrapping
#[inline]
pub fn reveal_into(self) -> T {
self.0
}
/// **Reveals** the held value by applying a function to it
#[inline]
pub fn map_revealed<V, F: FnOnce(T) -> V>(self, f: F) -> Secret<V> {
Secret(f(self.0))
}
}
impl<T> fmt::Debug for Secret<T> {
#[inline]
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "...")
}
}
impl<T: fmt::Display> fmt::Display for Secret<T> {
#[inline]
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "...")
}
}
impl<T: Clone> Clone for Secret<T> {
#[inline]
fn clone(&self) -> Self {
Secret(self.0.clone())
}
}
impl<T: PartialEq> PartialEq for Secret<T> {
#[inline]
fn eq(&self, other: &Secret<T>) -> bool {
self.0.eq(&other.0)
}
}
#[cfg(feature = "ord")]
impl<T: PartialOrd> PartialOrd for Secret<T> {
#[inline]
fn partial_cmp(&self, other: &Secret<T>) -> Option<Ordering> {
self.0.partial_cmp(&other.0)
}
}
#[cfg(feature = "ord")]
impl<T: Ord> Ord for Secret<T> {
#[inline]
fn cmp(&self, other: &Secret<T>) -> Ordering {
self.0.cmp(&other.0)
}
}
impl<T: Hash> Hash for Secret<T> {
#[inline]
fn hash<H: Hasher>(&self, state: &mut H) {
self.0.hash(state);
}
}
impl<T: Default> Default for Secret<T> {
#[inline]
fn default() -> Secret<T> {
Secret(T::default())
}
}
impl<T: Copy> Copy for Secret<T> {}
impl<T: Eq> Eq for Secret<T> {}
unsafe impl<T: Sync> Sync for Secret<T> {}
unsafe impl<T: Send> Send for Secret<T> {}
impl<T> From<T> for Secret<T> {
#[inline]
fn from(v: T) -> Secret<T> {
Secret(v)
}
}
#[cfg(feature = "serialize")]
impl<T: serde::Serialize> serde::Serialize for Secret<T> {
#[inline]
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
self.0.serialize(serializer)
}
}
#[cfg(feature = "deserialize")]
use serde::de::Error;
#[cfg(feature = "deserialize")]
impl<'de, T: serde::Deserialize<'de>> serde::Deserialize<'de> for Secret<T> {
#[inline]
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where
D: Deserializer<'de>,
{
// we need to intercept the exception, as it might contain the actual
// raw value being deserialized
match T::deserialize(deserializer).map(Secret) {
Err(_) => Err(D::Error::custom(
"a confidential value could not be deserialized",
)),
Ok(v) => Ok(v),
}
}
}
#[cfg(all(feature = "diesel_sql", feature = "std"))]
impl<A, DB, T> diesel::types::ToSql<A, DB> for Secret<T>
where
T: diesel::types::ToSql<A, DB> + fmt::Debug,
DB: diesel::backend::Backend + diesel::types::HasSqlType<A>,
{
#[inline]
fn to_sql<W: Write>(
&self,
out: &mut diesel::serialize::Output<W, DB>,
) -> Result<diesel::types::IsNull, std::boxed::Box<dyn std::error::Error + Send + Sync>> {
self.0.to_sql(out)
}
}
#[cfg(all(feature = "diesel_sql", feature = "std"))]
impl<'a, E, T> diesel::expression::AsExpression<E> for &'a Secret<T>
where
T: diesel::expression::AsExpression<E>,
&'a T: diesel::expression::AsExpression<E>,
{
type Expression = <&'a T as diesel::expression::AsExpression<E>>::Expression;
#[inline]
fn as_expression(self) -> Self::Expression {
(&self.0).as_expression()
}
}
#[cfg(all(feature = "diesel_sql", feature = "std"))]
impl<T, ST, DB> diesel::query_source::Queryable<ST, DB> for Secret<T>
where
DB: diesel::backend::Backend + diesel::types::HasSqlType<ST>,
T: diesel::query_source::Queryable<ST, DB>,
{
type Row = T::Row;
#[inline]
fn build(row: Self::Row) -> Self {
Secret(T::build(row))
}
}